
Introduction

• Ante-hoc vs. post-hoc explanations

• Causal effects are reliable and human-centric

• Learn and explain causal effects in an ante-hoc manner

• Study various causal effects of input neurons on the output

neurons1:

• Average Controlled Direct Causal Effect (ACDE)

• Average Natural Direct Causal Effect (ANDE)

• Average Natural Indirect Causal Effect (AICE)

• Average Total Causal Effect (ATCE)

• How to incorporate such causal effects in NNs?

• ACDE, ANDE, ATCE in CREDO (ICML 2022)

• AICE in AHCE (Under review)

1Judea Pearl. “Direct and indirect effects”. In: Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence. 2001.
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Direct and Indirect Causal Effects

• Consider the causal effect of X on Y

ACE y
x = E[Y |do(X = x)]− E[Y |do(X = x∗)]

• ACE y
x is different from E[Y |X = x ]− E[Y |X = x∗]

ACE y
x = EWE[Y |X = x ,W = w)]− EWE[Y |X = x∗,W = w ]

• W is backdoor set and x∗ is baseline intervention

• For direct causal effect, stop the influence through X → Z → Y

• For indirect causal effect, stop the influence flowing through X → Y
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Direct and Indirect Effects

• Direct Causal Effect

ADCEY
X = E[Y |do(X = x ,Z = Zx∗)]− E[Y |do(X = x∗,Z = Zx∗)]

• Indirect Causal Effect

AICEY
X = E[Y |do(X = x∗,Z = Zx)]− E[Y |do(X = x∗,Z = Zx∗)]

• Total Causal Effect

ATCEY
X = E[Y |do(X = x ,Z = Zx)]− E[Y |do(X = x∗,Z = Zx∗)]

Gowtham Matching Learned Causal Effects of Neural Networks with Domain Priors 3



Matching Learned Causal Effects of Neural

Networks with Domain Priors (CREDO)

Abbavaram Gowtham Reddy∗ Sai Srinivas Kancheti∗

Vineeth N Balasubramanian Amit Sharma



Introduction

• Incorporate causal prior knowledge in NNs

• Priors in the form of (parametric) functional relationships

• Causal priors are a result of RCTs or come from domain knowledge

• Three kinds of priors motivated by 3 kinds of causal effects:

• Average Controlled Direct Effect (ACDE)

• Average Natural Direct Effect (ANDE)

• Average Total Causal Effect (ATCE)

• We incorporate them in NNs by gradient-based regularization.
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Notations & Background

• We view a feed forward NN f as a structural causal model

• Neurons represent variables and edges represent causal relationships

• Mrginalize over hidden layers of a neuron and consider only input

and output layers.

• Let G be the causal graph of the SCM of f in which

• T is the treatment variable

• Ŷ is the outcome variable

• Z is the set of variable that lie in a directed path from T to Ŷ (in

the NN causal graph).

• W is the set of remaining variables

• We denote Ŷ |do(T = t) as Ŷt
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Different Causal Effects

• A trained NN learns some causal relationships between the inputs

and the outputs

• Following Pearl2, we define various causal effects of the feature T on

Ŷ learned by NN SCM

• First we define the ACDE in NNs and show its identifiability

• Please refer to our paper3 for regularizing and explaining ANDE,

ATCE.

• Controlled direct effect is slightly different from natural direct effect.

• In ACDE, intervention on Z ,W is fixed instead of deriving from x∗.

2Judea Pearl. “Direct and indirect effects”. In: Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence. 2001.

3Sai Srinivas Kancheti et al. “Matching Learned Causal Effects of Neural Networks with Domain Priors”. In: ICML. PMLR. 2022.
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Different Causal Effects

Average Controlled Direct Effect (ACDE) in NNs

Average Controlled Direct Effect (NN-ACDE ) measures the average causal

effect of T on Ŷ when all parents of Ŷ except T (Z ,W in this case) are

intervened to pre-defined control values (i.e., do(Z = z ,W = w)).

NN-ACDE Ŷ
t (z ,w) := EU [Ŷt,z,w ]− EU [Ŷt∗,z,w ] = Ŷt,z,w − Ŷt∗,z,w .

• Priors are expressed only in terms of T and Y

• A modified definition for NN-ACDE that marginalizes over {Z ,W }.

Our version of NN-ACDE is hence:

NN-ACDE Ŷ
t := EZ ,W ,U [Ŷt,Z ,W ]− EZ ,W ,U [Ŷt∗,Z ,W ]

Similarly, we define NN-ANDE and NN-ATCE in NNs.

Gowtham Matching Learned Causal Effects of Neural Networks with Domain Priors 7



Identifying Causal Effects

Identifying ACDE in NNs

ACDE Ŷ
t = EZ ,W ,U [Ŷt,Z ,W ]− EZ ,W ,U [Ŷt∗,Z ,W ] (Definition)

= EZ ,W [Ŷt,Z ,W ]− EZ ,W [Ŷt∗,Z ,W ] (NN is deterministic)

= EZ ,W [Ŷ |t,Z ,W ]− EZ ,W [Ŷ |t∗,Z ,W ] (Unconfoundedness)

• The ACDE can be computed empirically by sampling Z ,W

(covariates other than T ) from training data, and computing Ŷ via

forward pass

• Similarly, we prove the identifiability of NN-ANDE and NN-ATCE

in NNs
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Regularizing Causal Effects

• Match the causal effects learned by the NN to the true causal effects

• We enforce this by gradient matching

• The gradient of the provided causal domain prior is matched with

the gradient of the NN’s learned causal effect

• Gradient matching for ACDE is straightforward

• Gradient matching for ANDE should be done at a specific point

derived from t∗ i.e., (t,Zt∗ ,W )

• We match the total derivative to regularize ATCE
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Regularizing Causal Effects

Regularizing ACDE in NNs

∂ACDE Ŷ
t

∂t
=

∂[EZ ,W [Ŷ |t,Z ,W ]− EZ ,W [Ŷ |t∗,Z ,W ]]

∂t

=
∂[EZ ,W [Ŷ |t,Z ,W ]]

∂t
(t∗ is a constant)

= EZ ,W

[
∂[Ŷ (t,Z ,W )]

∂t

]
(exchange E and

∂

∂t
)

Regularizer

R(f ,G ,M) =
1

N

N∑
j=1

max{0, ∥∇j f ⊙M − δG j∥1 − ϵ}

Similarly, we regularize ANDE and ATCE in NNs
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Results

ACDE plots. The blue curves closely matches the domain priors (red curves),

indicatint that CREDO learns the desired causal effects
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Thank You!


